El año en el que el universo se empezó a encoger

El año en el que el universo se empezó a encoger

 

La teoría del Big Bang es el marco científico que mejor explica el universo que conocemos. Desde que se confirmó la existencia de otras galaxias (Gran Debate, 1920) a partir del cálculo de distancias a las más cercanas y la expansión del universo, por parte de E. Hubble, la teoría del Big Bang solo recibió comprobaciones empíricas que predecían el modelo de forma adecuada y ninguna refutación. Aunque siguen sin responderse determinadas particularidades, todas las ramas de la astronomía implicadas, desde la física de partículas hasta la cosmología, están bastante de acuerdo en que es la mejor teoría de la que disponemos para explicar lo que observamos: el propio universo.

Sin embargo, este universo enorme para la escala habitual humana, que hoy calculamos en unos 90 000 millones de años luz de diámetro, empezó a quedarse pequeño antes del cálculo de distancias a las galaxias más cercanas.

Porque, si las galaxias son los ladrillos del universo, las estrellas que las componen son la argamasa, y también la unidad que empleamos de referencia y de medida.

Durante milenios, pensamos que la Tierra se situaba inmóvil en el centro del universo, y el Sol, la Luna y los cinco planetas que veíamos a simple vista giraban a nuestro alrededor. Las estrellas se situaban más allá, en una última esfera indefinida en distancia, y hacían lo mismo que el resto de astros, girar alrededor de nuestro planeta.

Con el cambio de concepción copernicano, el Sol se sitúo en el centro del universo, y la Tierra junto con los planetas y las estrellas pasaron a girar entorno a nuestra estrella.

Pero las preguntas sobre qué eran las estrellas, cuántas había y lo lejos que se encontraban tuvieron que esperar varios siglos. Solo respondiendo a estas preguntas llegaríamos a las respuestas que a principios del siglo XX empezaron a explicar el universo.

El movimiento de la Tierra alrededor del Sol no había dado como resultado la observación de un pequeño movimiento de las estrellas que pudiera delatar que había estrellas más próximas respecto a otras estrellas que estuvieran más lejanas. Este fenómeno de perspectiva se conoce como paralaje. De hecho, este argumento se esgrimió en contra de la teoría heliocéntrica; la falta de observación de paralaje en estrellas cercanas (respecto a las más lejanas) era una de las pruebas que confirmaban que la Tierra no se movía alrededor del Sol.

Pero lo que ocurría en realidad es que las estrellas, incluidas las más cercanas, estaban tan lejos de nuestra estrella que los ángulos de desplazamiento de paralaje como consecuencia de la órbita de la Tierra alrededor del Sol eran inobservables por su pequeñez. Ni la invención del telescopio ni su uso para mirar las estrellas (Galileo, 1610) nos revelaba esos pequeños movimientos.

Con la ley de la gravitación universal de Newton, las leyes del movimiento planetario de Kepler y el estudio de las órbitas de los planetas y los cometas, junto con la mejora de los telescopios, la mecánica celeste vivió una época de esplendor. Halley convenció a su amigo Newton de la publicación de los Principia, pero, a partir del estudio de los registros del paso de un cometa en 1531, 1607 y 1682, concluyó que se trataba del mismo astro y calculó que volvería en 1757. En realidad, volvió en 1758, pero fue un triunfo del mundo mecanicista y lanzó a los astrónomos-matemáticos a calcular órbitas de los cometas, que esporádicamente se veían en el cielo.

F.W. Bessel era uno de ellos, pero, afortunadamente y por sugerencia de Olbers, empezó a trabajar en la posición detallada de unas 3000 estrellas estudiadas por J. Bradley, quien había descubierto la aberración de la luz estelar, y también el movimiento de nutación del eje de la Tierra, aunque por ello sea menos conocido.

El acceso a posiciones estelares medidas con mucha precisión provocó que Bessel destacara el movimiento propio de unas pocas estrellas respecto al resto, lo que podía implicar que, si éramos capaces de detectar esas pequeñas variaciones en su posición, es posible que su ubicación en el universo fuera de las más cercanas a nosotros.

Eligió una estrella de la constelación del Cisne, 61 Cygni [1], y esta elección era previsible. La estrella se puede observar a simple vista (cerca del límite visual) en la citada constelación boreal, y su movimiento propio respecto a sus estrellas vecinas ya había sido señalado por Piazzi en 1792 al comparar sus observaciones con las observaciones de varias décadas anteriores por parte de James Bradley (1753), observaciones que el propio Piazzi repetiría durante varios años y publicaría en 1802 [2].

Cabe destacar que, al telescopio de aficionado, la estrella se muestra como una estrella doble (binaria física) compuesta por dos estrellas rojas de tipos espectrales [3] K5 y K7 y de brillos aparentes +5,2 y +6,0, respectivamente, separadas por unos cómodos 29 segundos de arco, por lo que es posible resolverla con cualquier instrumento óptico de astrónomo aficionado. Las separaciones reales de este par de estrellas son de entre 45 y 125 unidades astronómicas entre ellas.

Estrella_61Cygni_16x60seg_26062017_AutosavePIXPSCS3GXTHLVGSRB&C_leyendarecuadro
61 del Cisne. Imagen tomada por el autor con un telescopio de 20 cm de diámetro

 

La estrella 61 del Cisne estaba en el punto de mira de varios astrónomos contemporáneos en la segunda década del siglo XIX (Arago o Mathieu, entre otros) con la finalidad de intentar determinar su ángulo de paralaje, pero solo gracias a la invención del heliómetro [4] de Fraunhofer (1820), se disponía de la suficiente precisión de medición micrométrica para estudiar con detalle el movimiento de la estrella, medidas que realizó Bessel [5] en 1837 y 1938.

Durante año y medio, siguió midiendo su posición mediante un micrómetro dispuesto en el ocular de su telescopio. En 1838, hizo público el ángulo de paralaje de esta estrella, 0,314 segundos de arco, que se correspondía con unas 657 000 veces la distancia de la Tierra al Sol, lo que vienen a ser unos 10,3 años luz de distancia. El error cometido por Bessel fue de casi el 10 %. Hoy conocemos que su distancia real es de 11,4 años luz, pero este dato de error es anecdótico; el ser humano había conseguido medir lo inmedible hasta entonces: la primera distancia a una estrella del firmamento.

Bessel tendría muchos otros éxitos en la astronomía y en las matemáticas, pero aquel año en el que fue la primera persona capaz de calcular la distancia a una estrella, el universo se encogió para toda la humanidad, aunque cerca de un siglo después descubriéramos de forma casi irrefutable que se estaba expandiendo.

Cygnus_IAU
Mapa de la constelación del Cisne. Es posible localizar 61 Cyg cerca de Tau y Sigma Cyg . Crédito: Sky & Telescope

 

En una noche de verano como esta, no te pierdas salir a cielo abierto con una carta celeste de la constelación del Cisne, localizar a simple vista la estrella (si el cielo es bastante oscuro) y observar su naturaleza como estrella doble de componentes rojizas al telescopio, y después, pensar que esas dos estrellas —a 11 años luz de nuestra estrella— encogieron el universo hace casi 200 años.

[1] http://simbad.u-strasbg.fr/simbad/sim-id?Ident=HD+201091&jsessionid=856DDB382546441AFD424EF92FDE57D3

[2] http://adsabs.harvard.edu/full/1990JHA….21..275F

[3] http://astro.unl.edu/naap/hr/hr_background1.HTML

[4] https://archive.org/stream/encyclopaediabrit13chisrich#page/224/mode/2up

[5] http://articles.adsabs.harvard.edu/full/1838AN…..16…65B

 

 

 

 

 

One thought on “El año en el que el universo se empezó a encoger

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s