100 años del principio del fin del universo de las estrellas

100 años del principio del fin del universo de las estrellas

 

La astronomía es una ciencia eminentemente visual. A pesar de la actual especialización, y de los diversos escenarios que estudia, muchos de los cuales se desarrollan en entornos que poco tienen que ver con una fotografía y mucho con datos y -poco emocionales -gráficas, la astronomía es una de esas pocas ciencias que sigue manteniendo en gran parte su aspecto visual, quizás por eso tiene una legión numerosa de aficionados y seguidores como ninguna otra disciplina científica.

El año pasado atisbamos a ver un agujero negro por primera vez en la historia de la humanidad. Podemos recordar esa figura de «rojizo dónut» que inundó los medios de comunicación y las redes sociales, que fue un gran hito que pasará a los libros de historia de la astronomía y de la ciencia.

Notaprensa_EHT
Nota de prensa del EHT, el pasado 10 de abril de 2019. Una fecha y una imagen para la historia de la astronomía.

Pero lo que vimos por primera vez el 10 de abril del pasado año no era una fotografía, era una imagen generada por súper-ordenadores a partir de multitud de datos de diferentes radio-telescopios situados por toda la Tierra y trabajando por interferometría [1].  Está imagen ni siquiera respondía a la luz visible, no es lo que veríamos con nuestros ojos si nos plantáramos por arte de magia allí, cerca del agujero negro, pues los radiotelescopios no trabajan en el rango visible si no en las longitudes de ondas de radio. Es más, para ser estrictos, era una imagen de la sombra del horizonte de sucesos (o sus proximidades) sobre la materia acretada gravitatoriamente por el mismo [2].

Pero ahora  ya podemos decir que todos hemos «visto» por primera vez un agujero negro y podemos exclamar de admiración al conocer las magnitudes de lo que estamos contemplando.  Un agujero negro súpermasivo con varias miles de millones de masas solares, que constituye el corazón de la galaxia Messier 87 (llamada también habitualmente Virgo A), a nada menos que 53 millones de años luz de nuestro planeta.

Está claro, ¿verdad?, la astronomía además de eminentemente visual es altamente adictiva quizás por el asombro  que produce en nuestro cerebro intentar comprender las magnitudes que baraja y la naturaleza de objetos tan exóticos de los que trata.

Si estás leyendo estas líneas, la mala noticia es que probablemente tú seas una de esas personas enganchadas a esta ciencia o estás a punto de serlo. Pero por si no lo eres o por si no lo conoces, vamos a repasar uno de los capítulos más apasionantes de la astronomía «moderna» que tiene mucho que ver con el proceso de cómo la astronomía nos eleva -emocionalmente hablando- sobre la superficie de nuestro planeta, y al mismo tiempo nos recuerda nuestra insignificancia (¿infinitesimal?) respecto al universo que habitamos.

Y este capítulo que revivimos tiene que ver precisamente con el aniversario al cumplirse estos meses, 100 años en que en que vislumbramos por primera vez el principio del fin de nuestro de universo de estrellas, de nuestro universo local , para convertirse en el universo de las galaxias.

Y es que sí ahora, en 2020, nos movemos entre la detección incipiente de ondas gravitacionales, imágenes de agujeros negros en lejanas galaxias y «olemos» una nueva frontera próxima por explorar en la física, que nos explique más satisfactoriamente tanto el microcosmos (modelo estándar de partículas) como el macrocosmos (la materia y energía oscura), hace 100 años los astrónomos «olían »que la comprensión del universo estaba a punto de cambiar… ¡y tanto si cambió!

En julio de 2017 realice una entrada [3] en la que reflexionaba sobre el año en el que universo empezó a «encoger», ese año fue 1838, cuando Bessel publicó el cálculo -mediante la técnica de la paralaje- de la distancia a la estrella 61 del Cisne. Ese año conocimos, no solo que las estrellas –que ya pensábamos eran otros soles como el nuestro- estaban muy lejos, si no que empezamos a saber cuán lejos se encontraban de nosotros.

Una vieja y sencilla geometría griega, con unos telescopios tecnológicamente simplistas en la época del triunfo mecanicista (cálculo de órbitas y posiciones), nos ofrecía por fin unos resultados sobre el tamaño de nuestro universo…la distancia a las estrellas que vemos brillar en el cielo en una noche despejada. Y poco a poco empezamos a conocer distancias a estrellas cercanas de nuestro universo al que denominábamos Vía Láctea.

Pero a finales del siglo XIX y especialmente principios del XX, nos encontrábamos ante un cambio importantísimo (una verdadera revolución) en la comprensión del microcosmos y del macrocosmos. En la física de lo muy pequeño, de la mano de la llamada escuela Alemana principalmente, y cuyas figuras más representativas podemos encontrar recogidas en el primer congreso Solvay (Bruselas, 1911) o en las ediciones sucesivas [4], con cierta preferencia por aquellos científicos que participaron en el de 1927, cuya foto reproducimos aquí.

1280px-Solvay_conference_1927
Congreso Solvay de 1927. Seguro que al lector le suenan algunas caras. Crédito: Benjamin Couprie (dominio público)

Pero junto al desarrollo de la física y mecánica cuántica, también se desarrollaba la Relatividad, la teoría que vendría a sustituir a la mecánica Newtoniana vigente durante tres siglos, de la mano de una de las más icónicas figuras de la ciencia del siglo XX, de sobra conocido por todos, A. Einstein.

Sin embargo, si bien la teoría de la Relatividad que iba a explicar el universo y su evolución de una forma mucho más exacta, se había desarrollado de una forma teórica, el siglo XX veía nacer las disciplinas observacionales potentes que nos iban a meter de lleno en la astronomía moderna. Estas disciplinas fueron la astrometría de precisión gracias al perfeccionamiento de los telescopios y la incipiente fotografía, la espectroscopia y la fotometría.

El registro mediante la fotografía (en placas de vidrio) permitía que el error humano en el registro desapareciera, y sobre todo que aumentara el rango dinámico en el que podíamos captar del universo: la placa fotográfica permitía acumular la luz durante la exposición, y volver visibles estrellas y detalles invisibles al ojo humano.

En este escenario de astronomía en «ebullición» es normal que nos preguntáramos si todo nuestro universo eran las estrellas que veíamos y fotografiábamos. Empezábamos a clasificar las estrellas de una forma adecuada, más allá de la única clasificación que habíamos mantenido durante 2000 años y que se basaba en su brillo aparente. La nueva clasificación que se basaba en su tipo espectral, sin duda tenía que ver con la naturaleza de la estrella y con sus propiedades físicas, que a la vez muy probablemente tenía que ver con su estado evolutivo.

Annie_Jump_Cannon_sitting_at_desk
Annie Jump Cannon, del Observatorio de la Universidad de Harvard, clasificó durante su vida más de 350 000 espectros estelares. Su clasificación fue adoptada por la IAU en 1922. Crédito: Smithsonian Institute (dominio público).

Empezamos a sospechar que la fuente de la energía de las estrellas se encontraba en su núcleo y que era la fusión nuclear de los átomos de hidrógeno, el elemento más abundante de nuestro universo. El estado de la materia a esas temperaturas tenía mucho que ver con la física de partículas subatómicas.

De vez en cuando alguna estrella experimentaba un súbito aumento de brillo, proseguido de un descenso de diferente caracterización o su desaparición. ¿Nos mostraba esto un fenómeno físico intrínseco de la estrella o tan solo un escenario geométrico como cuando se produce un eclipse?

Las nebulosas eran analizadas por primera vez como zonas de nacimiento estelar, ricas en hidrógeno molecular, sin embargo otras se resistían a integrarse en un vínculo estelar, solían poseer una simetría esférica y un extraño elemento que espectroscópicamente se había llamado «Nebulio» (y que después se identificaría como oxigeno doblemente ionizado). Otras que también se resistían a vincularse con las estrellas eran aquellas que presentaban una simetría espiral, si bien su marca espectral no se alejaba mucho de las estelares.

Curiosamente se suele citar que sobre la naturaleza de estas nebulosas espirales se había especulado a mediados del siglo XIX, cuando el tercer conde de Rosse, William Parsons, había construido el telescopio más grande del mundo para estudiarlas, el Leviatán de Parsonstown, un monstruo de 1,8 metros de diámetro. Sin embargo no me ha sido posible constatar mayor aportación que su descripción morfológica, que no puede compararse con las deducciones previas de E. Kant en 1755 [5] sobre la posibilidad que las nebulosas fueran en realidad otros «universo islas».

heber_doust_curtis
Heber D. Curtis. Crédito: Lick Observatory.

Volviendo al finales del siglo XIX, entre los astrónomos que tienen a su alcance los trabajos científicos con las nuevas técnicas que se están aplicando en la astronomía, encontramos a Heber D. Curtis (1872-1942), astrónomo estadounidense  de la universidad de Stanford (California), aunque previamente había trabajado en el Observatorio Lick (Universidad de California, Berkeley) donde en enero de 1888 se había inaugurado el refractor más grande del mundo, un telescopio de 91 centímetros de diámetro.

Tras su doctorado en la Universidad de Virginia regresó al Observatorio Lick, estudiando diversos campos tan diversos como las estrellas binarias o las nebulosas espirales. Había reparado en el estudio de estrellas «novas» como método para calcular distancias, en particular los estudios de las variables cefeidas desarrollados por Henrietta Leavit (Universidad de Harvard) en 1912 como« candelas estándar» para el cálculo de distancias en el universo.

Las  observaciones de V. Slipher (Observatorio de Flagstaff, Arizona) del corrimiento de las líneas espectrales [6] de las galaxias espirales (1912-1914), parecían indicar altas velocidades, 11 de ellas alejándose y 1 acercándose. Estas velocidades eran varias decenas de veces superiores a las velocidades mostradas por las estrellas que podemos observar, por lo que se podía intuir que quizás se tratara de objetos mucho más lejanos, los más lejanos conocidos.

Además, Slipher dedujo del análisis espectroscópico que al menos la nebulosa espiral que mostraba una velocidad de acercamiento, rotaba [7], y esta no era otra que la nebulosa de la constelación de Andrómeda.

Curtis empezó a interesarse de forma creciente por estos objetos, y dedujo que la distancia a la nebulosa espiral que se acercaba hacia nosotros, la nebulosa espiral de Andrómeda, quizás se encontrara mucho más allá de nuestro universo de estrellas, a unos 500 000 años luz, constituyendo por si misma otro universo, un «universo isla», en un «universo de universos isla». La Vía Láctea era más pequeña de lo que nos creíamos, pero solo era nuestro universo local, más allá se encontraban otras galaxias, y todas ellas configuraban lo que era realmente el universo.

Harlow_Shapely
Harlow Shapley. Crédito: Smithsonian Institute.

Sin embargo, entre sus colegas contemporáneos encontramos a Harlow Shapley (1885-1972), doctorado en Princeton (Nueva Jersey) bajo la tutela de Henry N. Russell, con el que se especializaría en el estudio de sistemas estelares binarios.

En 1914 entró a trabajar en el Observatorio de Monte Wilson (Los Ángeles), donde destacaba el gran reflector de 2,5 metros (telescopio Hooker). Su interés en los trabajos de H. Leavitt y la identificación de estrellas variables de este tipo (cefeidas) en cúmulos estelares globulares  le llevó a plantear dos teorías interesantes; la primera es que las variables cefeidas debían sus variaciones de brillo a pulsaciones físicas y no a ser parte de un sistema binario mutuamente eclipsante. La segunda, que se podía calcular distancias a los cúmulos globulares de acuerdo a los estudios de H. leavitt respecto a estas estrellas. Estas ubicaciones de los cúmulos globulares hacían nuestro universo conocido mucho más grande de lo que suponíamos, y también desplazaban al Sol de una supuesta situación privilegiada [8].

Sin embargo, convencido de la relación periodo-luminosidad de las cefeidas, pero no de las conclusiones obtenidas de los corrimientos espectrales de las galaxias espirales, abogaba por un universo más grande del que se pensaba a principios del siglo XX, una Vía Láctea que englobaba todo el universo conocido –incluidas las nebulosas espirales- y más allá, la nada.

Dos posturas armadas de las herramientas más destacadas de la astronomía, pero confrontadas. Aunque nunca existió un debate entre ellos para aceptar o refutar teorías sobre el tamaño del universo, lo cierto es que lo que se ha conocido como «Gran debate» se produjo el 26 de abril de 1920 (hace casi justo 100 años) en el Museo Nacional de Historia Natural del instituto Smithsoniano (Washintong D.C). Ambos defendieron -con total respeto- sus respectivas visones del tamaño del universo y de la naturaleza de las nebulosas espirales, y ahí finalizó temporalmente este aparente dilema.

Pero las estrellas variables cefeidas como método de determinar distancias se aliaría en pro del principio del fin de nuestro universo local, el universo de las galaxias estaba a punto de aparecer para quedarse.

E_Hubble
E. Hubble. Un astrónomo que sigue siendo conocido entre el público ¿Por qué será?. Crédito: Johan Hagemeyer, dominio público.

Edwin Hubble (Observatorio de Monte Wilson), con insistencia y dosis de fortuna buscó entre 1922 y 1923 estrellas cefeidas en la nebulosa espiral de Andrómeda y otras nebulosas espirales destacables. Una primera cefeida descubierta en la nebulosa espiral de Andrómeda cifró su distancia no inferior a 1 500 000 años luz, y ello  desencadenó una verdadera revolución en la visión del universo [9].

hubble_v1
Una histórica imagen de la galaxia de Andrómeda, tomada por Edwin Hubble en 1923. En la placa se ve tachada una “N” de nova y escrito “VAR!” de estrella variable (cefeida). Crédito: Smithsonian Institute

Los datos recogidos mediante el desplazamiento Doppler en las líneas de estos objetos cobraba ahora coherencia, y el  «Gran Debate» sobre el tamaño de nuestro universo empezaba a tener una dirección clara en su resolución. Hubble publicó sus resultados el 1 de enero de 1925 en el encuentro de la American Astronomical Society.

La Vía Láctea había muerto como un único «universo» de estrellas, y era tan solo una de las muchas galaxias que poblaban el cosmos, que además poco después se demostraría que se encontraba en expansión.

Notas del texto

[1] La interferometría es una técnica que permite combinar la radiación procedente de una misma fuente en diferentes telescopios o radiotelescopios, perfectamente sincronizados, aumentando así la resolución individual de los telescopios individuales y gracias al principio de superposición de las propiedades ondulatorias de la luz. La interferometría que hizo posible la primera imagen de un agujero negro fueron los radiotelescopios que componían el llamado Event Horizon Telescope: https://eventhorizontelescope.org/

[2] Aunque un agujero negro es un objeto muy denso cuya gravedad no deja escapar la luz, la materia que cae bajo el efecto de su campo gravitatorio, suele formar un disco de acreción de materia muy denso y altamente caliente (emisor de radiación), que progresivamente va siendo engullido. El primero de los agujeros negros detectados, Cygnus X-1 (1964) fue descubierto gracias a la emisión de rayos X que llegaban a la Tierra, generada por su disco de acreción, desde 6000 años luz de distancia.

[3] https://cielosestrellados.net/2017/07/23/2793/

[4] Las conferencias o congresos Solvay iniciales se celebraron en los años 1913, 1921, 1921, 1924, 1927, 1930, 1933, 1948, 1954, 1958, y algunos de estos reunieron a las mentes más brillantes del siglo XX.  Posteriormente se han venido celebrando aproximadamente cada 3 años. Este año, la 28 conferencia, se realizará en octubre.

http://www.solvayinstitutes.be/html/solvayconference.html

[5] Historia general de la naturaleza y teoría del cielo, 1755.

[6] El efecto Doppler tiene que ver con el cambio de frecuencia de una onda sonora en movimiento. Aplicado en la espectroscopia, es posible conocer el desplazamiento de una fuente de luz estudiando el desplazamiento de sus líneas de absorción respecto a una fuente en reposo.

[7] http://articles.adsabs.harvard.edu/pdf/1913LowOB…2…56S

[8] http://articles.adsabs.harvard.edu/pdf/1918PASP…30…42S

[9] http://adsabs.harvard.edu/abs/1925Obs….48..139H

 

 

 

 

 

6 comentarios en “100 años del principio del fin del universo de las estrellas

  1. Magnifico artículo German, has resumido de manera brillante un cambio de paradigma que nos abrió la mente a la inmensidad del cosmos y, de camino nos “bajó los humos” a los seres humanos dejando entrever nuestro modesto lugar en el universo.
    Un saludo, compañero.

    Le gusta a 1 persona

    • ¡Muchas gracias, compañero! Intento explicar las cosas como a mi me hubiera gustado que me las explicaran, y le añado un poco de pasión. Gracias por tus comentarios, me ayudan a seguir escribiendo (la gente lee, pero no comenta ni para bien ni para mal 😦 ), un saludo. 🙂

      Me gusta

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s